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Going up and down the scales...

The scales involved in GPM are unprecedented (microphysical to global
scale)

There is no hope to explicitly resolve all scales everywhere. Discrepancies
between: process scale, observational scale and modeling scale

Small scales matter in getting the larger scales right (NL interactions that
grow over time)

Upscaling = Find closures or parameterizations that “summarize” the effect
of small scales without explicitly resolving them, e.g, convective
parameterizations

Downscaling = Statistical “reconstruction” of the missing variability at sub-
grid scales, i.e., at scales smaller than the satellite footprint or the model
“resolution scale”.



Lessons learned the hard way...

There is no way to do proper upscaling or downscaling without an
exhaustive study of how the process variability changes over scales: from
the smallest to the largest scale

The “numerical laboratory” of Greg Tripoli is an example for redoing the
upscaling of microphysics

The extensive atmospheric BL turbulence field campaigns are examples for
coming up with better ABL parameterizations

Understanding the multiscale statistical structure of rainfall is a prerequisite
for developing precipitation downscaling schemes, techniques for merging
observations at different scales, or for comparing model outputs to
observations at different scales (model verification)



Spatial Variability and Intermittency are Functions of Scale
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» Having same variability at a large scale does not imply
same variability at smaller scales

Kwajalein:Dec. 4, 1998

Darwin: Dec. 24, 1998
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Premises of Statistical Downscaling

* There is a substantial evidence to suggest that despite
the very complex patterns of precipitation, there is an
underlying simpler structure which exhibits scale-
iInvariant statistical characteristics

 If this scale invariance is unraveled and quantified, it can
form the basis of moving up and down the scales:
important for efficient and parsimonious downscaling
methodologies



Outline of Talk

Multi-scale analysis of spatial precipitation

Relation of statistical parameters to physical observables
A spatial downscaling scheme

A space-time downscaling scheme

Merging multiscale/multisensor observations

Hydrologic applications: beyond hydrographs!



Multiscale Analysis — 1D example
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Multiscale Analysis — 1D example
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Multiscale Analysis — 1D example
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2D Multiscale Rainfall Analysis

* Local gradients of rainfall depend on local average rainfall
intensities

*However, local standardized gradients -

» Are approximately independent of local averages

» Obey approximately a Normal distribution centered around
zero, i.e., have only 1 parameter to worry about in each direction

» Their variance varies log-log linearly with scale
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™

A storm-dependent parameter

™

(See Perica and Foufoula-Georgiou, JGR, 1996)

Variance at known large scale



Relation of statistical parameter H to physical observables

0.4
H

0.35

0.3}

0.25}

0.2}

0.15¢

0.1}

0.057

0 1000

'H =.0516 + .9646(CAPE x 10 )
(R=.82)

2000

< CAPE >

(See Zhang and Foufoula-Georgiou, JGR, 1997)

3000

O I R | 1 1 VVJ

0. = potential T of an air parcel lifted

C

from the surface to the level z

0., = potential T of the unsaturated

env

environment at the same level
LFC = level of free convection
EL = Equilibrium level

CAPE (m?/s?) is a measure of
potential instability

<CAPE> = representative CAPE



Examples of Downscaling

64x64 km

Given:

-Large scale means (e.g., 64x64
km average rain)

-Pre-storm environmental
conditions (CAPE)

-Parameters of predictive
equations (CAPE — H, C)

AX4 KM — 4x4 km
: Provide (via statistical

downscaling based on IWT):

Rainfall at any smaller scale

IWT — Inverse Wavelet Transform

Downscaled Observed

(See Perica and Foufoula-Georgiou, JGR, 1996)



Examples of Downscaling

64x64 km

4x4 km

Downscaled Observed

(See Perica and Foufoula-Georgiou, JGR, 1996)



Space-Time Downscaling

Spatial variability changes over time . . .

t=1hr t=2hr t=3hr

t=4hr t=5hr t=6hr

January 27th, 1992 Darwin, Hourly Accumulation




Standard Daviation versus Scale
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Statistical Evolution of Rainfall: PDFs of Aln/
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Question: Is it possible to rescale space and
time such that some scale-invariance Is
unraveled?

 Look for transformatlon that relate the dimensionless
guantities / and /

* Possible only via transformation of the form
“Dynamic scaling”

(See Venugopal, Foufoula-Georgiou and Sapozhnikov, JGR, 1999)



Iso-PDFs
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Space-time downscaling preserves temporal persistence
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Downscaling Precipitation for Improving Surface Energy Fluxes

* Ignoring subgrid-scale rainfall variability has been found to affect
prediction accuracy of water and energy fluxes at grid scales (due to
small-scale NL interactions which amplify).

e Example: Modeling the effects of the July 4-5, 1995 storm over
Midwestern US

R12: Run coupled MM5-BATS; at 12km resolution
R3: Downscale rainfall at 3 km — run BATS at 3 km — couple fo MM5 @ 12 km.
R3-12: “error” due to ignoring subgrid-scale rainfall 32 hours later.

Error Result:

R3-R12:

* Notice that the 3 km
rainfall heterogeneities going
through the coupled land-
atmosphere system
propagate to larger scale
(approx. 40 km) anomalies in

(‘:;/m'Z)
Soil moisture @ top 10cm (%) Latent heat flux from surface WaTerj and ener‘gy ﬂuxes as
seen in these figures.

(See Nykanen, Foufoula-Georgiou, and Lapenta, J. Hydrometeorology, 2001)

-

= (:0)'?'0;“;’ "ﬁ -

1ow ol o @M BEr SAw e K e elw alw aew




Downscaling hydrometeors for improving CRM composition
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CRMs at 1-2 km resolution
underestimate the hydrometeor
variability and do not faithfully
reproduce the storm vertical
structure

Can re-introduce this subgrid
scale variability via hydrometeor
downscaling

Can use to improve the
scattering properties of cloud
data bases used in rainfall
retrieval

(See: Harris, Foufoula-Georgiou, Kummerow, JGR, 2003; Smedsmo, Venugopal, Foufoula-Georgiou, Droegemeier, and Kong, JAM, 2005)




Challenges in Precipitation Downscaling for GPM

1. Multiscale statistics of rainfall vary geographically and seasonally.
Current parameterizations are in terms of CAPE but more refined and
robust storm-specific predictive equations for downscaling are needed
over diverse storm environments.

2. The parameters controlling the temporal evolution of subgrid-scale
statistics (for space-time downscaling) have not yet been related to
physical attributes of the storm. Since preserving the short-term (within
3 hours) temporal persistence of downscaled rainfall is important for
many applications, more research is needed on this topic.

3. Schemes for downscaling orographic precipitation need to be
developed. They should not be purely statistical but take advantage of
the underlying orography in a hybrid physical-statistical framework.



Merging Multisensor/Multiscale Observations

» Optimal estimation at a desired scale, given partial or noisy measurements
at different scales

* Introduced a multi-scale Kalman-Filtering methodology (SRE=scale-
recursive estimation) and demonstrated its performance
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Upward Sweep (Filtering) - Measurement Update
- Prediction at next scale
- Merging of Predictions

Dovwnward Sweep (Smoothing) - Incorporation of neighborhood dependence

(See: Tustison, Harris and Foufoula-Georgiou, JGR, 2001; Gupta, Venugopal and Foufoula-Georgiou, JGR, 2006)



GPM and Hydrology: Much Beyond Hydrograph Prediction

Rainfall is the driver...

*Predicting the water, sediment and nutrient
cycling and the ecosystem response to natural
or anthropogenic stresses has become
imperative.

*High resolution topography is becoming
readily available around the world and in
remote mountainous areas.

*Our understanding of how the physical
template (river network topology, geomorphic
features) affects ecosystem dynamics
(vegetation, food webs, stream water quality)
increases rapidly.

» Wireless technology and new environmental
sensors and laboratory to field-scale
experiments, adds to this understanding.



GPM Opportunity: Debris Flow and Landsliding

(Highest debris flows: highest rainfall over steep areas)

Maximum hourly rainfall contours from NEXRAD Contours of debris-flow concentration

June 27, 1995 Rapidan Storm, Madison County

(See Wieczorek et al., 1993)



GPM and Probabilistic Risk Assessment
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GPM opportunity: Sediment delivery to the streams
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GPM Opportunity: Biological and Ecological Response

*Precipitation affects the composition of
hillslope sediment entering the streams

*Excessive loading of fine sediment
smothers bed topography and reduces
growth and survival of juvenile
steelhead (the most serious impairment
of many western US Rivers)

*Benthic insects hidden in embedded
sediments are less available to fish

*The whole food web is affected

Research at NCED (National Center
for Earth-surface Dynamics)
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Micro-scale to field-scale Experiments

Rainfall

1T

vegetation

L

biotic process

1T

channel morphology



GPM offers unique opportunities for the Earth Sciences . ..

1. High resolution topography becomes readily available around the world and in
remote mountainous areas.

GPM offers the potential for understanding and predicting:
* Rainfall-induced hazards
 Ecosystem response to extremes or altered climates
» System recovery after disruption

2. Should not miss the conceptual opportunity offered by GPM of substituting
space for time; unprecedented chance to study diverse environments
simultaneously to speed up understanding and predictive ability. Needs a
methodic framework of study.

« Also offers the ability for Probabilistic Risk Assessment

3. Even at resolution of 4 km, 3 hr over the globe the opportunities are
tremendous.

4. Precipitation downscaling (<4 km in space, <3 hours in time) is imperative for
some applications and despite progress several challenges still exist.



Precipitation at the Center of Geosciences?

sors represents an additional dimension of
sensitivity and specificity for molecular imag-
ing. The depletion process generating the image
contrast depends on several parameters, includ-
ing saturation power and time, sensor concen-
tration, and ambient temperature. The latter
parameter provides another promising approach
to increase sensitivity even further, because the
exchange rate increases considerably when ap-
proaching 37°C (10). Characterization of the
saturation dynamics is currently under way and
will reveal optimized parameters for future
applications.

The technique is also quite promising for
biomedical imaging in vivo. A typical surface
coil of 20 em diameter detects a volume of ca.
2.1 liters, thus decreasing S/N for a (2.8 mm)?
voxel by a factor of 272 compared with our
setup. This loss is less than 50% of the gain for
an optimized system using >45% polarized
isotopically enriched '?*Xe. An isotropic reso-
lution of 2 to 3 mm is feasible without signal
averaging for a concentration of pure polarized
129Xe that is ~2 pM in tissue. This minimum
value is below those observed for direct
injection of Xe-carrying lipid solutions into rat
muscle (70 uM) or for inhalation delivery for
brain tissue (8 uM) used in previous studies
that demonstrated Xe tissue imaging in vivo
(17). Sensitive molecular imaging of the bio-
sensor is therefore possible as long as the
distribution of dissolved xenon can be imaged
with sufficient S/N and the biosensor target is
not too dilute, because HYPER-CEST is based
on the detection of the free Xe resonance, not
direct detection of the biosensor resonance.

The HYPER-CEST technique is amenable to
any type of MRI image acquisition methodology.
‘We demonstrated CSI here, but faster acquisition
techniques that incorporate a frequency encoding
domain such as FLASH (fast low angle shot)
have been successfully used to acquire in vivo Xe
tissue images (/7).

The modular setup of the biosensor (i.e., the
nuclei that are detected are not covalently bound
to the targeting molecule) allows accumulation
of the biosensor in the tissue for minutes to hours
before delivery of the hyperpolarized xenon
nuclei, which have much higher diffusivity. In
combination with the long spin-lattice relaxation
time of Xe, this two-step process optimally pre-
serves the hyperpolarization before signal acqui-
sition. Biosensor cages that yield distinct xenon
frequencies allow for multiplexing to detect
simultaneously several different targets (I8).
Also the serum- and tissue-specific Xe NMR.
signals (19, 20) arising after injection of the
carrier medium can be used for perfusion studies
(Fig. 3B) in living tissue, making Xe-CSI a
multimodal imaging technique.
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Wetland Sedimentation from
Hurricanes Katrina and Rita
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More than 131 x 10 metric tons (MT) of inorganic sediments accumulated in coastal wetlands
when Hurricanes Katrina and Rita crossed the Louisiana coast in 2005, plus another 281 x 106 MT
when accumulation was prorated for open water area. The annualized combined amount of
inorganic sediments per hurricane equals (i) 12% of the Mississippi River's suspended load, (ii)
5.5 times the inorganic load delivered by overbank flooding before flood protection levees were
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September, 2005, respectively, leaving behind a
devastated wrban and rural landscape. Massive
amownts of water, salt, and sediments were re-
distributed across the coastal zone within a few
hours as a storm surge of up to 5 m propagated in
anortherly direction at the coastline south of New
Orleans, LA (Katrina), and near Sabine Pass,
Texas (TX) (Rita), inundating coastal wetlands in
the region. A thick deposit of mud remained in
these coastal wetlands after the storm waters re-
ceded (Fig. 1). We used this post-storm remnant
to learn about how coastal systems work

The loss of LA’s coastal weflands peaked be-
tween 1955 and 1978 at 11,114 ha year™ (1)
and declined to 2591 ha year™ from 1990 to
2000 (2). Coastal wetlands, barrier islands, and
shallow waters are thought to provide some pro-
tection from hwricanes, by increasing resistance
to storm surge propagation and by lowering hur-
ricane storm surge height (3). Restoring LA’s
wetlands has become a political priority, in part
because of this perceived wetland/storm surge
connection. A major part of LA’s restoration
effort is to divert part of the Mississippi River
into wetlands, and at considerable cost [ref.
(Sf) in supporting online material (SOM)].
‘Widely adopted assumptions supporting this
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Rainfall responsible for ice-sheet
break-up . ..

Storms in the tropics and Northern
Hemisphere create transoceanic
waves linked to the Antarctic ice sheet
calving and break-up (MacAyeal, GRL,
2006)

Rainfall responsible for triggering
earthquake activity . . .

Rainfall creates spatio-temporal
changes in pore pressure which alters
the strength of faults triggering
earthquakes (Hainzl et al., GRL, 2006)

Rainfall responsible for the
Mississippi Delta subsidence . ..

(Turner et al., Science, 2006)



